Variable Rate Starter Fertilization Based on Soil Attributes

Jeffrey Vetsch and Dr. Daniel Kaiser Univ. of Minnesota

Fluid Fertilizer Forum, Scottsdale, AZ February, 18, 2014

Funding provided by the Fluid Fertilizer Foundation

Justification

- On calcareous (pH>7.4) P fixing soils a fluid starter fertilizer, like ammonium poly phosphate (APP), applied in-furrow may be an efficient and economic alternative to a traditional broadcast application.
 - Especially, on short-term rented land, where the farmer is not necessarily interested in building soil test levels (if, pH>7.7 hard to build soil test).
 - Instead the primary goal is to maximize yield and profit while minimizing risk.

Funding provided by the Fluid Fertilizer Foundation

Justification continued

- Widespread adoption of variable rate fertilization and availability of variable rate controllers has raised new questions.
 - Does the optimum rate of starter fertilizer vary enough within a field to require variable rate application of starter?
 - What soil or landscape attributes can be used to make variable starter rate application recommendations?

Funding provided by the Fluid Fertilizer Foundation

University of Minnesota

Driven to Discoversm

- The objectives of this study were to:
 - 1) measure the effect of APP rate on early growth of corn, grain yield and fertilizer use efficiency;
 - 2) determine if the optimum rate of APP varies within a typical Minnesota field;
 - develop and calibrate an algorithm for making variable rate starter applications based on soil attributes; and
 - compare and contrast the effects of a traditional broadcast P application on the response(s) observed in objectives 1, 2 and 3.

esota**Corn**

UNIVERSITY OF MINNESOTA

Driven to Discoversm

Funding provided by the Fluid Fertilizer Foundation

Experimental design

- Modified strip trial design
- Treatments randomized within replications in a split-plot arrangement
 - Main plot: Broadcast P rate (2)
 - Sub plot: APP starter rates (4)
- 16 replications per location
 - 16 reps × 8 treatments = 128 plots
- Response data from replications with similar soil attributes are pooled together

Funding provided by the Fluid Fertilizer Foundation

10' 10'

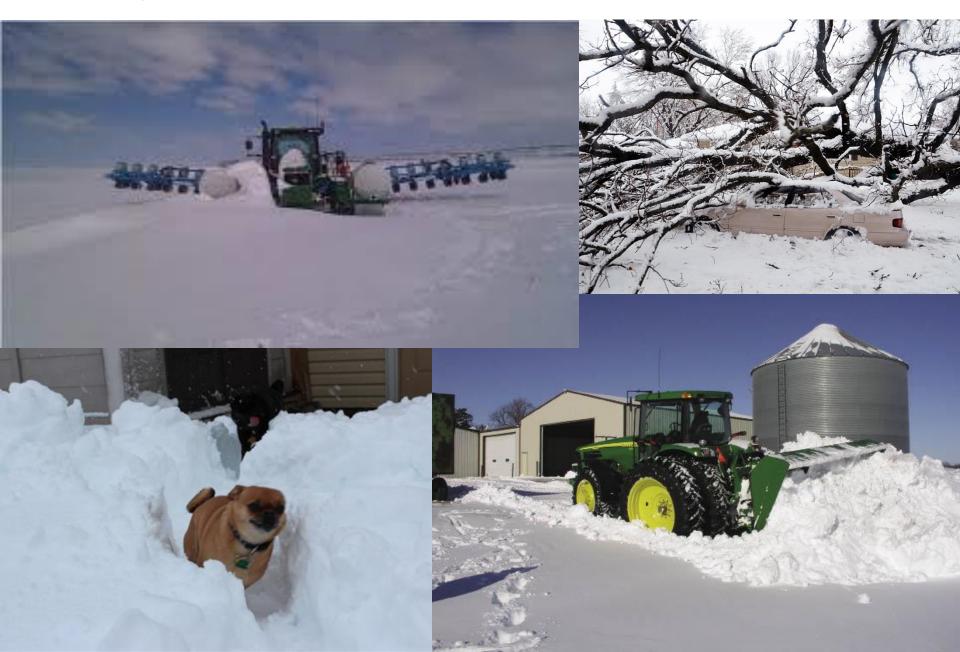
Methods and timeline

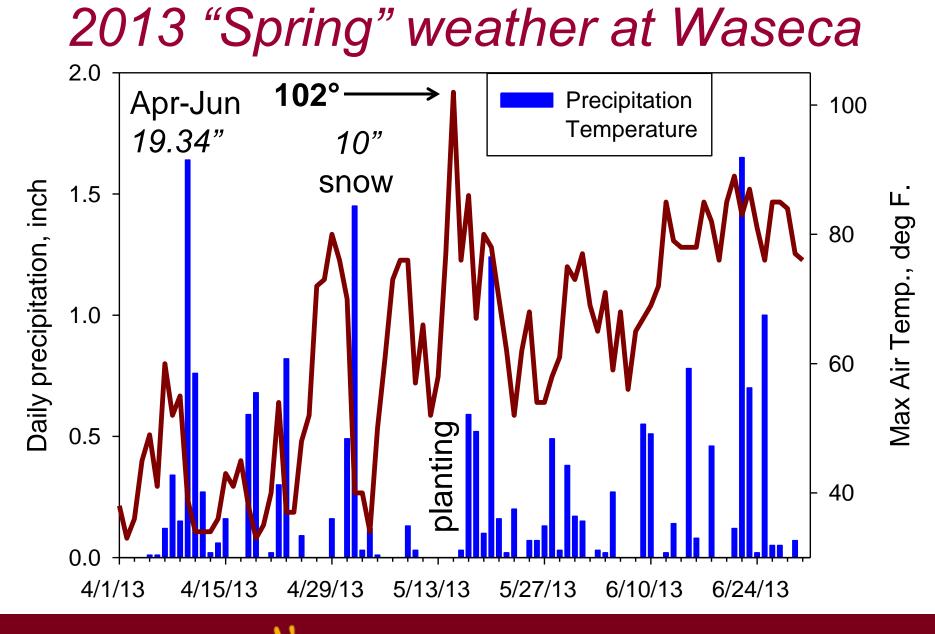
- Study initiated by Dr. Daniel Kaiser in 2012 (two sites) in south-central Minnesota, 3 sites in 2013.
- Soil samples analyzed for Bray P1, Olsen P, pH, CaCO₃ and exchangeable K
 - 0-6 inch samples: one composite (8 cores) sample from two neighboring plots or an area about 15 ft. by 35 ft.
 - 6-12 inch samples: one composite (16 cores) for each replication or an area 40 ft. by 130 ft (0.12 ac).
- Broadcast-apply P at 0 and 120 lb P₂O₅/ac as TSP
- Broadcast-apply N, K, S and Zn as needed to optimize corn production, incorporate with tillage.

Funding provided by the Fluid Fertilizer Foundation

esotaCorn 🛃

Methods and timeline (continued)


- Plant corn and apply APP in-furrow at 0, 2.5, 5 and 7.5 gal/ac or about 0, 10, 20 and 30 lb P₂O₅/ac
- Farmer cooperator managed: weeds and pests as needed along with the rest of field
- At V5, harvest 8 whole plants for yield, P conc., P uptake; NDVI (GreenSeeker[™] sensor); stand counts - calculate plant populations
- Combine harvest center two rows 45 ft long in two 22.5 ft segments; at harvest collect grain sample analyze for total P


Funding provided by the Fluid Fertilizer Foundation

May 2, 2013 SC and SE Minnesota

linnesota**Corn**

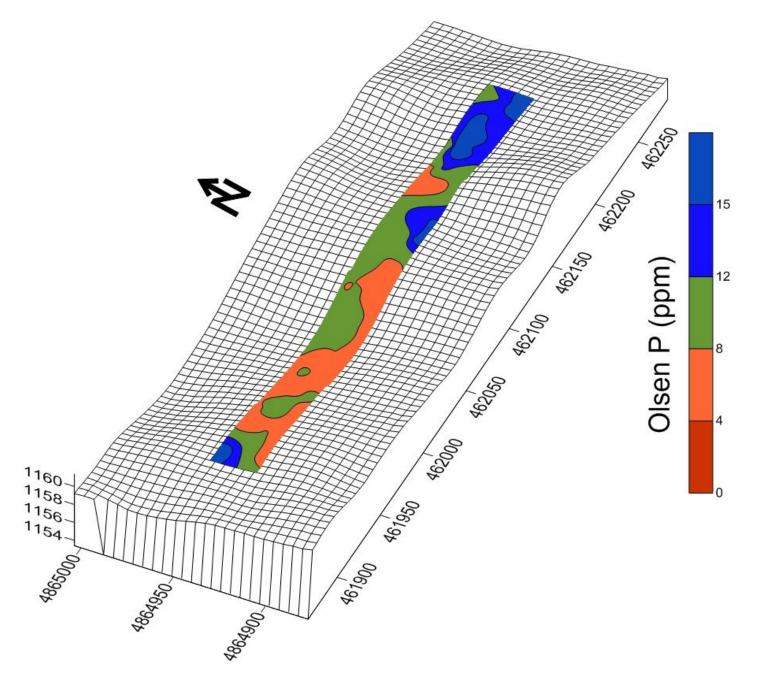
Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to Discover™

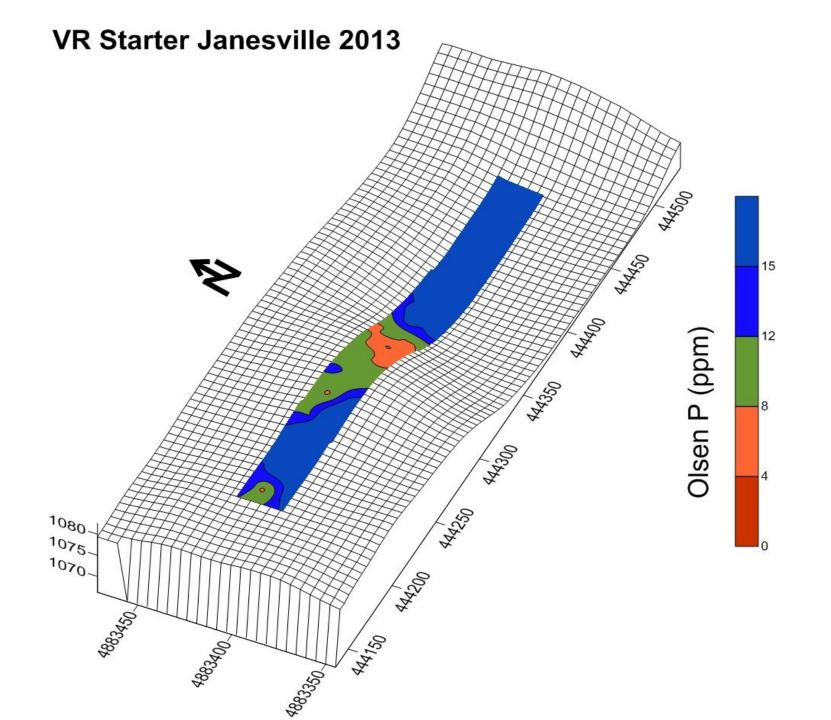
Summary of soil test attributes

				рН		Olsen-P			
Loc.	SOM	Bray	K	Min	Avg	Max	Min	Avg	Max
	%	pp	om					-ppm	
G12	5.8	25	209	5.9	6.8	7.8	4	14	27
S12	5.0	19	208	6.4	7.6	8.0	4	13	28
NR13	5.7	16	251	6.2	7.3	7.8	5	10	29
W13	3.3	12	176	6.1	7.2	8.0	4	7	36
J13	5.8	27	171	5.3	5.8	6.5	6	19	38

Funding provided by the Fluid Fertilizer Foundation



University of Minnesota


Driven to Discoversm

VR Starter New Richland 2013

VR Starter Willmar 2013

Statistical significance of treatment main effects for V5 corn plants by location.

Parameter	Location	Broadcast P	Starter P	Bdct*Starter
		P > F		
V5 Plant Mass	Gaylord	NS	NS	NS
	Stewart	NS	NS	NS
	New Richland	NS	<0.001	NS
	Willmar	0.045	0.015	NS
	Janesville	0.004	<0.001	0.079
V5 P Uptake	Gaylord	NS	NS	NS
	Stewart	NS	NS	NS
	New Richland	0.007	<0.001	NS
	Willmar	0.011	0.043	NS
	Janesville	0.001	<0.001	NS

Funding provided by the Fluid Fertilizer Foundation

Summary: V5 whole plants

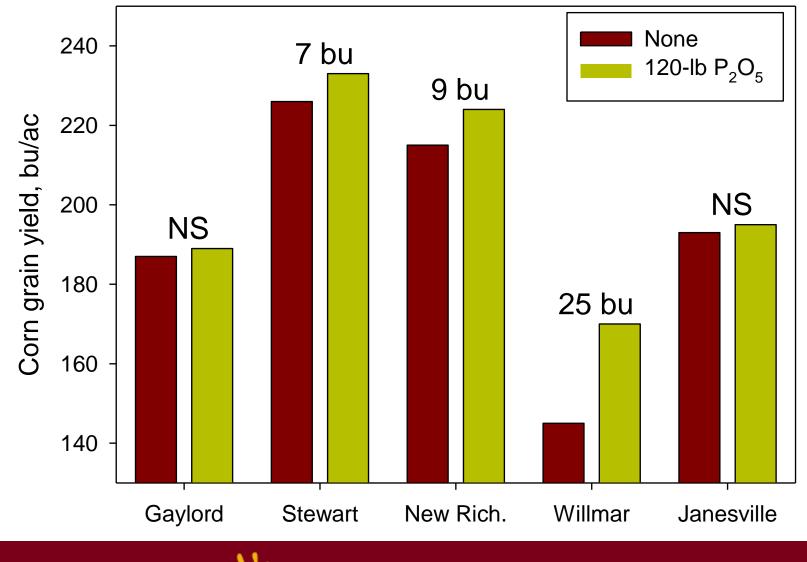
- Plant populations were NOT affected by treatments (data not shown).
- Early growth of corn (V5 plant mass) and P uptake were not affected by treatments in 2012, a very warm spring.
- Broadcast P increased V5 mass in 2 of 3 sites and P uptake in 3 of 3 sites in 2013, a very cool and wet spring.

esotaCorn

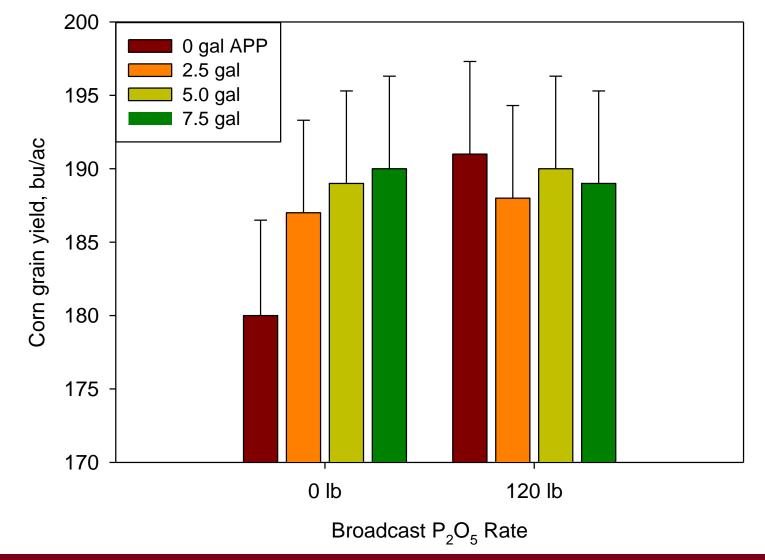
 Starter (APP) increased V5 mass and P uptake in 3 of 3 sites in 2013.

Funding provided by the Fluid Fertilizer Foundation

Significance of treatment main effects for grain yield and moisture by location.


Parameter	Location	Broadcast P	Starter P	Bdct*Starter
		P > F		
Grain Yield	Gaylord	0.090	NS	0.050
	Stewart	0.050	NS	NS
	New Richland	0.004	0.029	NS
	Willmar	<0.001	NS^	NS^
	Janesville	NS	NS	NS
Grain Moisture	Gaylord	NS	0.051	NS
	Stewart	NS	NS	NS
	New Richland	NS	0.007	NS
	Willmar	0.053	NS	NS
	Janesville	0.031	0.003	0.049

Funding provided by the Fluid Fertilizer Foundation


Corn yield as affected by broadcast P

1innesota**Corn**

Funding provided by the Fluid Fertilizer Foundation

Grain yield at Gaylord in 2012

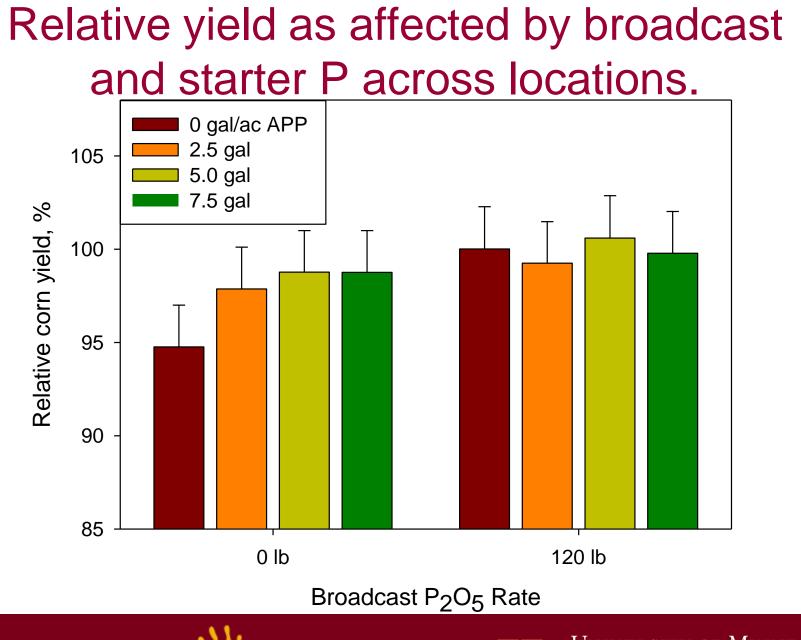
esotaCorr

Funding provided by the Fluid Fertilizer Foundation

Summary: corn grain yield

- Broadcast P increased grain yields at 3 of 5 sites (a=0.05).
 - Yields were 7, 9, and 25 bu/ac greater at Stewart, New Richland and Willmar, respectively.
- Starter (APP) increased grain yields at 1 of 5 sites.
 - 5-10 bu/ac at New Richland
- APP increased grain yields (7-10 bu/ac) at Gaylord when no broadcast P was applied.

nesota**Corn**


UNIVERSITY OF MINNESOTA

to Discoversm

Funding provided by the Fluid Fertilizer Foundation

Relative yield as affected by treatment main effects including soil test P levels, when analyzed across locations (Willmar excluded).

	P Soil Test Used to Delineate Zones		
Treatment Effects	Olsen P	Bray P	
Soil Test P Level	relative yield, %		
Low	98.0 a	97.9 a	
Medium	98.8 a	97.9 a	
High/Very High	99.4 a	99.5 a	
Broadcast Rate			
$0 \text{ lb } P_2O_5/\text{ac}$	97.5 b	97.1 b	
120 lb	99.9 a	99.8 a	
Starter (10-34-0) Rate			
0 gal/ac	97.4 b	97.1 b	
2.5 gal	98.6 ab	98.4 ab	
5.0 gal	99.7 a	99.3 a	
7.5 gal	99.3 a	99.0 a	
Interactions, $(P > F)$			
Broadcast Rate*Starter Rate	0.013	0.110	

innesota**Corn**

Funding provided by the Fluid Fertilizer Foundation

Summary: relative yield

- Broadcast P increased relative yields about
 2.5 percentage points (Willmar site excluded).
- 5 and 7.5 gal/ac of APP increased grain yields about 2 percentage points compared with 0 gal/ac of APP
 - 2.5 gal/ac was intermediate
- A significant broadcast P rate*starter rate interaction showed:
 - APP increased grain yields when no broadcast P was applied.

iesota**Corn**

Funding provided by the Fluid Fertilizer Foundation

Acknowledgements

- The authors are most grateful to:
 - the Fluid Fertilizer Foundation, Minnesota
 Corn Growers, Corn Research and Promotion
 Council for funding this project
 - FFF partnering labs for "in-kind" support
 - research crews at the Department of Soil,
 Water, and Climate and Southern Research
 and Outreach Center for their assistance

-farmer cooperators for their assistance and the use of land

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA

Driven to Discover™

QUESTIONS

Jeffrey Vetsch Univ. of Minnesota Southern Research and Outreach Center jvetsch@umn.edu

http://sroc.cfans.umn.edu/People/Staff/JeffreyVetsch/index.htm

